New non-modal hydrodynamic stability and resulting non-exponential growth rates – a symmetry approach

Fluids Seminar
November 18, 2016 12:00 am

Speaker:  Martin Oberlack, Chair of Fluid Dynamics, TU Darmstadt

URL for Speaker:  http://www.fdy.tu-darmstadt.de/fdy/mitarbeiter_20/mitarbeiterdetails_16448.en.js…

Location:  ESB 2012

Intended Audience:  Public

Classical hydrodynamic stability theory for laminar shear flows, no matter if considering long-term stability or transient growth, is based on the normal-mode ansatz, or, in other words, on an exponential function in space (stream-wise direction) and time. Recently, it became clear that the normal mode ansatz and the resulting Orr-Sommerfeld equation is based on essentially three fundamental symmetries of the linearized Euler and Navier-Stokes equations: translation in space and time and scaling of the dependent variable – independent of the base flow, which is analyzed on its stability. Further, Kelvin-mode of linear shear flows seemed to be an exception in this context as it admits a fourth symmetry resulting in the classical Kelvin mode which is rather different from normal-mode. However, very recently it was discovered that most of the classical canonical shear flows such as linear shear, Couette, plane and round Poiseuille, Taylor-Couette, Lamb-Ossen vortex or asymptotic suction boundary layer admit more symmetries. This, in turn, led to new problem specific non-modal ansatz functions. In contrast to the exponential growth rate in time of the modal-ansatz, the new non-modal ansatz functions usually lead to an algebraic growth or decay rate, while for the asymptotic suction boundary layer a double-exponential growth or decay is observed.