Speaker: Prof. Andre Fortin, Department of Mathematics and Statistics, Laval university, Québec
URL for Speaker: http://www.mat.ulaval.ca/le_departement/professeurs_et_enseignants/andre_fortin/…
Location: LSK 460
Intended Audience: Public
Industrial partners often have very high expectations concerning numerical modeling: accuracy, efficiency, robustness and, whenever possible, low computation costs and this, for very complex problems. In the last few years, we have concentrated our efforts at GIREF on the development of quadratic discretizations (in both space and time) for a large variety of applications. This is a good compromise between linear solutions (wrongly believed as low cost solutions) and higher order finite element approximations requiring higher solution regularity. To further enhance the accuracy of our solutions, we have also developed an adaptive remeshing strategy that can be applied to high order discretizations and leads to optimal meshes in a sense that will be explained. This also led to the development of iterative methods that maintain their convergence properties on very anisotropic meshes. In this presentation, I will briefly describe some of these methods and present a few industrial applications.
Andre Fortin received a Ph.D. from Laval university in 1984 under the direction of Michel Fortin (2005 CAIMS research prize). He has been a professor at the department of applied mathematics at École Polytechnique de Montréal between 1984 and 1999. Then back to Laval University as a professor at the department of mathematics and statistics where he also became director of the GIREF (Groupe interdisciplinaire de recherche en éléments finis). His research is oriented towards the applications of the finite element method to industrial problems: fluid mechanics, polymer processing, solid mechanics with applications to the tire industry, processing of wood based products, etc. He is the chairman of the Chaire industrielle de recherche du CRSNG en calcul scientifique de haute performance (NSERC research chair for high performance scientific computing).