THE NUMERICAL TREATMENT OF ILL-POSED PROBLEMS USING
THE METHOD OF CONJUGATE GRADIENTS

By

Sally A. Ross

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES
INSTITUTE OF APPLIED MATHEMATICS

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

September 1988

© Sally A. Ross, 1988
Abstract

This thesis examines the use of the method of Conjugate Gradients as an iterative method to be applied to linear system of equations that are ill-conditioned. An overview of the particular problems associated with the solution of ill-conditioned linear systems is given and the method of Conjugate Gradients described. It is shown that, at each iteration, the method of Conjugate Gradients weights the contribution from the singular vectors using a polynomial that is characterized as the solution to a weighted least squares problem. The form of the polynomials is shown to approximate a series of interpolating polynomials that constitute an efficient filtering technique required for computing solutions to ill-conditioned systems. The performance of the method of Conjugate Gradients is shown to compare favourably with other accepted methods for ill-conditioned linear systems. An application from the field of image processing is given and the efficient computation of a smooth reconstructed image from a defocussed picture is demonstrated.
Table of Contents

Abstract

List of Tables

List of Figures

Acknowledgement

1 Introduction

1.1 Sensitivity of Linear Systems

2 The Numerical Treatment of Integral Equations

2.1 The Continuous Problem

2.2 The Discrete Problem

2.3 Regularization Techniques

2.3.1 Regularization of the Problem

2.3.2 Regularization of the Solution: Iterative Filtering

3 The Method of Conjugate Gradients

3.1 The Method of Conjugate Directions

3.2 The Method of Conjugate Gradients

3.2.1 The Conjugate Gradients Algorithm

3.2.2 Properties of the Method of Conjugate Gradients

3.2.3 Conjugate Gradients as an Iterative Method

...
3.2.4 Convergence Rate .. 43

3.3 Preconditioned Conjugate Gradients ... 45

- **3.3.1 Generalized Conjugate Gradients** .. 45
- **3.3.2 Practical Implementation of Preconditioned Conjugate Gradients** 47
- **3.3.3 Common preconditioners** ... 49

3.4 Conjugate Gradients for Linear Least Squares 51

- **3.4.1 Linear Least Square Algorithm** .. 51
- **3.4.2 The Preconditioned Algorithm for Least Squares** 53

4 The Filtering Properties of the Method of Conjugate Gradients 54

4.1 Iterative Filtering .. 55

4.2 The Filtering Function .. 56

4.3 Characterization of the Operator 62

- **4.3.1 Precise: Minimization of the Deviation from Zero** 63
- **4.3.2 Approximate: Interpolation** 64
- **4.3.3 Extension to Later Iterates** 68

4.4 Approximation to the Inverse .. 72

4.5 Numerical Tests ... 74

5 Numerical Application .. 86

5.1 A Description of the Problem .. 86

- **5.1.1 The Mathematical Reconstruction of Degraded Pictures** 86
- **5.1.2 The Test Example** .. 89

5.2 Discussion of Results ... 90

- **5.2.1 Termination** ... 101

6 Discussion ... 104
List of Tables

2.1 Comparison between the SVE and the SVD ... 19

4.2 Coefficients for the first 3 polynomials for the Trapezoidal example 60
4.3 Coefficients for the first 4 polynomials for the Phillips’ example 62
4.4 Comparison of accuracy and work for the Hilbert example. 75
4.5 Comparison of accuracy and work for the Trapezoidal example. 77
4.6 Comparison of accuracy and work for the Simpson’s example. 77
4.7 Comparison of accuracy and work for the Phillips’ example. 78
4.8 Conjugate Gradient analysis for the Hilbert example 82
4.9 Conjugate Gradient analysis for the Trapezoidal example 83
4.10 Conjugate Gradient analysis for the Simpson’s example 84
4.11 Conjugate Gradients analysis for the Phillips’ example 85

5.12 Analysis from the Conjugate Gradients algorithm for the Cross example . 101
5.13 Analysis from the Conjugate Gradients algorithm for the L example 102
5.14 Analysis from the Conjugate Gradients algorithm for the Box example . 102
List of Figures

4.1 Examples of filtering polynomials ... 61
4.2 Examples of the filter values for the Hilbert example 70
4.3 Examples of the filter values for the Trapezoidal example 71
4.4 The singular value spectra for the 4 test examples 76
4.5 Chosen solution for the Simpson and the Phillips' test cases 79

5.6 The digitized sharp test images .. 91
5.7 The digitized defocussed test images 93
5.8 Numerical representation of the degraded test images 94
5.9 The error for each of the test images 95
5.10 The singular values of the reconstruction matrix 96
5.11 Numerical results from iterations for the Cross 97
5.12 Visual representation of iterates for the Cross 98
5.13 Visual representation of iterates for the L 99
5.14 Visual representation of iterates for the Box 100
Acknowledgement

I am indebted to my supervisor, Dr James Varah, for his constant patience and expert guidance regarding the preparation of this thesis and throughout my studies in Vancouver. Special thanks go to my family in Belgium, for always being so supportive, but especially for paying the telephone bill. I would like to acknowledge, with particular gratitude, the Gibbins family for giving me a stress-free home to enable this to be completed. This thesis may have been abandoned had it not been for the support and encouragement given by Steve Adams, I am very grateful to him for so many reasons.