DYNAMICS AND CONTROL OF A FLEXIBLE TETHERED SYSTEM WITH OFFSET

By

Robert W. Pidgeon

B. Sc. (Mathematics) University of Windsor

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES INSTITUTE OF APPLIED MATHEMATICS

We accept this thesis as conforming to the required standard

..

..

..

..

..

THE UNIVERSITY OF BRITISH COLUMBIA

August 1991

© Robert W. Pidgeon, 1991
In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Institute of Applied Mathematics
The University of British Columbia
2075 Wesbrook Place
Vancouver, Canada
V6T 1W5

Date: _________________________
Abstract

A mathematical model of a platform based flexible tethered satellite system in an arbitrary orbit, undergoing planar motion, is obtained using the Lagrangian procedure. The governing equations of motion account for the platform and tether pitch, longitudinal tether oscillations, offset of the tether attachment point as well as deployment and retrieval of the tether.

A numerical parametric study of the highly nonlinear, nonautonomous and coupled equations of motion gives considerable insight into the system dynamics useful in its design. Of particular interest are the interactions involving orbital eccentricity, system librations, tether flexibility and offset, retrieval maneuvers and initial disturbances. Results show that the offset strongly couples tether and platform dynamics, and the resulting responses show high frequency modulations corresponding to the longitudinal tether oscillations. The system was found to be unstable during retrieval. The Linear Quadratic Regulator based offset control strategy, in conjunction with the platform mounted momentum gyros, is proposed to alleviate the situation. Results show that a strategy involving independent parallel control of low and high frequency responses can damp rather severe disturbances in a fraction of an orbit.
Table of Contents

Abstract ii

List of Figures vi

List of Symbols ix

Acknowledgement xi

1 Introduction 1

2 Mathematical Model 5
 2.1 System Description ... 5
 2.1.1 Introduction ... 5
 2.1.2 Reference Frames ... 7
 2.1.3 Position Vectors ... 7
 2.1.4 Generalized Coordinates 8
 2.1.5 Constraints .. 11
 2.2 Nonlinear Equations of Motion 12
 2.2.1 Kinetic Energy ... 12
 2.2.2 Potential Energy 15
 2.2.3 Lagrange's Method 18
 2.3 Linearized System ... 23
3 Parametric Study

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>27</td>
</tr>
<tr>
<td>3.2 Basic Response</td>
<td>28</td>
</tr>
<tr>
<td>3.3 Offsets</td>
<td>28</td>
</tr>
<tr>
<td>3.3.1 Horizontal Offset</td>
<td>28</td>
</tr>
<tr>
<td>3.3.2 Vertical Offset</td>
<td>33</td>
</tr>
<tr>
<td>3.4 Eccentricity</td>
<td>33</td>
</tr>
<tr>
<td>3.5 Subsatellite Mass</td>
<td>33</td>
</tr>
<tr>
<td>3.6 Tether Mass</td>
<td>39</td>
</tr>
<tr>
<td>3.7 Platform Inertias</td>
<td>39</td>
</tr>
<tr>
<td>3.8 Reel Mass</td>
<td>40</td>
</tr>
<tr>
<td>3.9 Tether Length</td>
<td>40</td>
</tr>
<tr>
<td>3.10 Retrieval</td>
<td>48</td>
</tr>
</tbody>
</table>

4 Control

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Linear Quadratic Regulator (LQR)</td>
<td>52</td>
</tr>
<tr>
<td>4.2 Parallel Control</td>
<td>53</td>
</tr>
<tr>
<td>4.3 Numerical Solution</td>
<td>54</td>
</tr>
<tr>
<td>4.4 Varying Weights</td>
<td>57</td>
</tr>
<tr>
<td>4.5 Subsatellite Mass</td>
<td>60</td>
</tr>
<tr>
<td>4.6 Eccentricity</td>
<td>60</td>
</tr>
<tr>
<td>4.7 Platform Inertias</td>
<td>60</td>
</tr>
<tr>
<td>4.8 Tether Length</td>
<td>67</td>
</tr>
<tr>
<td>4.9 Control During Retrieval</td>
<td>67</td>
</tr>
</tbody>
</table>

5 Concluding Comments
Appendix A: Details of the Linearized Equations of Motion

Appendix B: Typical Weighting Matrices

Bibliography
List of Figures

1.1 Tethered Satellite showing the working principle ... 3

2.1 Platform based Tethered Satellite System (TSS). ... 6

2.2 Reference frames and generalized coordinates. ... 9

2.3 Position vectors. .. 10

2.4 Comparison between nonlinear and linear responses to a fixed initial dis-
 turbance .. 26

3.1 Response of the system during the reference stationkeeping
 configuration to a prescribed disturbance:
 (a) low frequency platform and tether pitch oscillations; 29
 (b) relatively high frequency longitudinal oscillations of the tether. 30

3.2 Effect of the tether attachment point’s offset along
 the local horizontal on the system response:
 (a) time history of the pitch motion; ... 31
 (b) coupling between the tether longitudinal dynamics and
 the pitch motions. ... 32

3.3 Effect of the tether attachment point’s offset along
 the local vertical on the system response:
 (a) time history of the pitch motions; ... 34
 (b) small influence of the tether’s longitudinal dynamics on its pitch motion. 35
3.4 System pitch response as influenced by the orbit eccentricity 34

3.5 System dynamics as affected by the subsatellite mass:
(a) pitch response over a long duration; 37
(b) enlarged view over a short duration showing the coupling effects. 38

3.6 Effect of tether mass on the system response:
(a) time history of the platform and tether pitch dynamics; 41
(b) longitududinal dynamics of the tether and its coupling effects. 42

3.7 System response showing the effect of platform inertias:
(a) pitch response; 43
(b) high frequency coupling effects of the tether longitudinal dynamics. 44

3.8 Effect of the reel mass on the system dynamics 45

3.9 Effect of the tether length on the response of the system:
(a) pitch motion; 46
(b) coupling effects due to change in the tether longitudinal
 oscillation frequency. 47

3.10 Effect of retrieval 50

4.1 Effect of decoupling high and low frequency motions 55

4.2 Block diagram showing closed loop system with parallel
 control and offset feedforward 56

4.3 Control of the system in the stationkeeping mode:
(a) time history of the pitch and tether longitudinal motions; 58
(b) associated offset motions and gyromomentum output. 59
4.4 Plots showing effectiveness of the LQR control strategy in the presence of an increased subsatellite mass:
(a) time variation of the pitch and tether length; 61
(b) offset dynamics and momentum gyro output. 62

4.5 Controlled response during stationkeeping in the presence of an orbital eccentricity of $e = 0.01$:
(a) platform and tether motions 63
(b) offset and momentum gyro output time histories. 64

4.6 Effect of the platform inertia on the controlled motion of the system in stationkeeping:
(a) platform and tether responses; 65
(b) time histories of the tether attachment point and momentum gyro output. 66

4.7 Effectiveness of the offset control strategy as affected by a tether length of 500 m:
(a) pitch and longitudinal oscillations response; 68
(b) offset and momentum gyro output time histories. 69

4.8 System response as affected by the retrieval rates:
(a) pitch dynamics and the exponential retrieval profiles; 70
(b) offset and longitudinal oscillation time histories. 71
List of Symbols

[A] \text{coefficient matrix of } x \text{ and } x̄

a_p \text{ altitude at perigee}

α_p \text{ platform pitch angle}

α_t \text{ tether pitch angle}

[B], [B̅] \text{coefficient matrix of } u \text{ and } ū

C \text{ system center of mass}

[C] \text{coefficient matrix of q}

d_x, d_z \text{ horizontal and vertical offsets, respectively}

D_x, D_z \text{nondimensionalized offsets; } d_j/l_b, j = x, z

d \text{ vector of offsets, } d = d_x i_p + d_z k_p

e \text{ orbit eccentricity}

ε \text{ tether strain variable}

G \text{ universal gravitational constant}

h_K \text{ orbit constant}

i_j, j_j, k_j \text{ unit vectors in frame } F_j, j = i, c, p, t

I_{xx}, I_{yy}, I_{zz} \text{ platform inertias}

[I], [0] \text{identity and zero matrices, respectively}

[K] \text{coefficient matrix of q, stiffness matrix}

l, l \text{ instantaneous tether line vector and magnitude, respectively}

\bar{l} \text{ nominal unstretched tether length}

L, \bar{L} \text{nondimensional forms of } l \text{ and } \bar{l}; \ L = l/l_b, \ \bar{L} = l/\bar{l}_b

l_b \text{ initial nominal tether length}

M_e \text{ mass of earth}
\([M]\) \hspace{1cm} \text{coefficient matrix of } \dot{\bar{q}}, \text{ mass matrix}

\(M_s\) \hspace{1cm} \text{subsatellite mass}

\(M_r\) \hspace{1cm} \text{reel mass}

\(M_t\) \hspace{1cm} \text{deployed tether mass}

\(M_p\) \hspace{1cm} \text{platform mass}

\(M_{srt}\) \hspace{1cm} \(M_s + M_r + M_t\)

\(M_{pct}\) \hspace{1cm} \(M_p + M_r + M_t\)

\(M\) \hspace{1cm} \text{total mass of the system, } M = M_p + M_r + M_t + M_s

\(\bar{P}, P\) \hspace{1cm} \text{retrieval and eccentricity influence vectors, respectively}

\(q\) \hspace{1cm} \text{vector of generalized coordinates}

\([Q]\) \hspace{1cm} \text{matrix of weights for control variables}

\([R]\) \hspace{1cm} \text{matrix of weights for state variables}

\(\rho\) \hspace{1cm} \text{tether line density}

\(\tau\) \hspace{1cm} \text{nondimensional platform wheel torque}

\(T\) \hspace{1cm} \text{system kinetic energy}

\(U_g, U_s\) \hspace{1cm} \text{gravitational and strain energies, respectively}

\(U\) \hspace{1cm} \text{system potential energy, } U = U_g + U_s

\(u\) \hspace{1cm} \text{vector of control variables}

\(\omega_t\) \hspace{1cm} \text{angular velocity of the tether frame}
Acknowledgement

I would like to offer my sincere thanks to Dr. Vinod Modi for his direction in the preparation of this thesis. I would also like to express my appreciation to the Institute of Applied Mathematics for providing an environment which encourages work in fields of application. Finally a special thanks to Toni Foster for her invaluable support and encouragement.