Appendix B: Typical Weighting Matrices

The decomposition described in Section 4.2 amounts to writing the functional J of Section 4.1 as $J = J_s + J_f$, where J_s corresponds to the lower frequency pitch motions and J_f pertains to the tether stretch. These two quantities are given by:

\[
J_s = \int_0^\infty x_s^T(Q_s)x_s + u_s^T R_s u_s \, dt;
\]
\[
J_f = \int_0^\infty x_f^T(Q_f)x_f + u_f^T[R_f]u_f \, dt.
\]

The nonzero elements of the weighting matrices are given here for the stationkeeping case shown in Figure 4.3 (fixed weight case). Note that $[R_f]$ and u_f are scalars in this case since D_s is the only control variable for the high frequency motion. The feedforward matrices used to return the offsets to the starting position are also shown.

Weights for State Variables:

\[
Q_s(1,1) = 100
\]
\[
Q_s(2,2) = 1000
\]
\[
Q_s(3,3) = 100
\]
\[
Q_s(4,4) = 1000
\]
\[
Q_f(1,1) = 100
\]
\[
Q_f(2,2) = 10
\]
Weights for Control Variables:

\[R_s(1,1) = 5 \]
\[R_s(2,2) = 0.1 \]
\[R_f = 0.0001 \]

Feedforward Matrices:

\[V(1,1) = 14 \]
\[V(2,2) = 250 \]
\[W(1,1) = 6 \]
\[W(2,2) = 240 \]