EXTENDED GROUP ANALYSIS OF THE WAVE EQUATION

By

Alex Yim-Cheong Ma

B. A. Sc. (Electrical Engineering) University of British Columbia, 1988

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

in
THE FACULTY OF GRADUATE STUDIES
DEPARTMENT OF MATHEMATICS
and
INSTITUTE OF APPLIED MATHEMATICS

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
March 1990
© Alex Yim-Cheong Ma, 1990
In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Alex Ma

Mathematics
The University of British Columbia
2075 Wesbrook Place
Vancouver, Canada
V6T 1W5

Date: April 3, 1990
Abstract

A comprehensive study of potential symmetries admitted by partial differential equations is given using the wave equation $u_{tt} = c^2(x)u_{xx}$ as a given prototype equation, R. Methods are given for the construction of various conserved forms for R. Potential symmetries for R are nonlocal symmetries realized as local symmetries of auxiliary systems obtained from conserved forms of R. The existence of potential symmetries for R can be determined algorithmically and automatically by the use of a symbolic manipulation program. Most importantly, the potential symmetries obtained through one auxiliary system may or may not include and/or extend those obtained through another auxiliary system. The work in this thesis significantly extends the previously known classes of potential symmetries admitted by R and results in a better understanding of the limits in the construction of potential symmetries for R.
Table of Contents

Abstract ii

Acknowledgement vi

1 Introduction 1

1.1 Symmetry Method for Differential Equations 1

1.1.1 Lie Groups of Transformations; Symmetries 1

1.1.2 Infinitesimal Transformations 3

1.1.3 Multiparameter Lie Groups 4

1.1.4 Extended Transformations 4

1.1.5 Invariance of Differential Equations 6

1.1.6 Invariant Solutions 7

1.2 Potential Symmetries for PDE's 9

1.2.1 Overview 9

1.2.2 Finding Potential Symmetries 11

1.3 Finding Symmetries of Differential Equations 13

1.3.1 Algorithm 13

1.3.2 Classification Problems 14

1.4 Invariance Properties of the Wave Equation 16

1.4.1 Group Analysis of the Wave Equation \(c^2(x)u_{xx} = u_{tt} \) 16

1.4.2 Group Analysis of the System \(v_x = u_t/c^2(x), \ v_t = u_x \) 17

1.4.3 Forms of the Wave Speeds 19
1.5 Noether’s Theorem and Conservation Laws .. 21
1.5.1 Euler-Lagrange Equations ... 21
1.5.2 Variational Symmetries ... 21
1.6 New Potential Symmetries for the Wave Equation 24
1.7 Chapter Summary ... 26

2 Cascading Potential Symmetries .. 27
2.1 Introduction to Cascaded Systems ... 27
2.2 Three Cascaded Systems for the Wave Equation 30
2.3 Induced Symmetries ... 32
 2.3.1 Cascaded System $T_1\{x, t, u, v, \phi\}$ 32
 2.3.2 Cascaded System $T_2\{x, t, u, v, w\}$ 33
 2.3.3 Cascaded System $T_3\{x, t, u, v, w, \phi\}$ 33
2.4 Group Classification of the System: $\phi_x = v, \phi_t = u, v_x = u_t/c^2(x)$ 35
2.5 Group Classification of the System: $w_x = u/c^2(x), w_t = v, v_t = u_x$ 40
2.6 Group Classification of the System: $\phi_x = v, \phi_t = u, w_x = u/c^2(x), w_t = v$ 46
2.7 Group Analysis of $(c^2(x)v_x)_x = v_{tt}$ 47
2.8 Relationships Between the Two Wave Equations: $c^2(x)u_{xx} = u_{tt}$ and $(c^2(x)v_x)_x = v_{tt}$... 51
 2.8.1 Associated System $S\{x, t, u, v\}$ 51
 2.8.2 Cascaded System $T_1\{x, t, u, v, \phi\}$ 52
 2.8.3 Cascaded System $T_2\{x, t, u, v, w\}$ 53
 2.8.4 Cascaded System $T_3\{x, t, u, v, w, \phi\}$ 54
2.9 Potential Symmetries of the System $S\{x, t, u, v\}$ 55
2.10 Chapter Summary ... 56
3 Nonlinear Conserved Forms of the Wave Equation

3.1 Introduction to Conservation Laws and Conserved Forms 57
3.2 Variational Symmetries for a Lagrangian of the Wave Equation 59
3.3 Construction of Conservation Laws 63
3.4 Group Classification of $v_x = (u_t)^2/c^2(x) + (u_x)^2$, $v_t = 2u_x u_t$. 65
3.5 Higher Order Conservation Laws 68
3.6 Chapter Summary .. 70

4 Linear Conserved Forms of the Wave Equation 71

4.1 Introduction to Linear Conserved Forms 71
4.2 Group Classification of $v_x = xu_t/c^2(x)$, $v_t = xu_x - u$. 74
4.3 Group Classification of $v_x = (tu_t - u)/c^2(x)$, $v_t = tu_x$. 80
4.4 Chapter Summary .. 82

5 Discussion ... 84

5.1 Conclusions ... 84
5.2 Future Research .. 88

Bibliography ... 89
Acknowledgement

I thank Professor George Bluman, my thesis supervisor, for his introduction of the subject and his guidance and valuable suggestions during the preparation of the manuscript.

I am indebted to Greg Reid for his computer assistance and his software packages that saved me tens of days of calculations.

Finally, I would like to thank Professor Brian Seymour for his reading of the final manuscript of the thesis.